KAMONYI DISTRICT

HOLYDAYS WORK, 2024-2025

SUBJECT: MATHEMATICS II

-MATH-ECONOMICS-GEOGRAPHY (MEG)

-MATHEMATICS -COMPUTER-ECONOMY (MCE)

INSTRUCTIONS:

This paper has THREE sections A and B

SECTION A: Attempt ALL questions (55 marks)

SECTION B: Attempt any THREE questions (45 marks)

SECTION A: Attempt all the questions (55 marks)

1) Given the complex number z = 45i

$$w = 7i - 10$$

a) Complete the following table /2marks(0.5mark each)

Complex number	Real part	Imaginary part
Z		
W		

b) answer true or false/ 2marks (1mark each)

i)z is purely imaginary

ii) w is real

2) find the value of i^{2243} **/2marks**

3) calculate the following limits

$$\lim_{x\to 0} \frac{\ln(\cos x)}{x} / 2$$

4) find the domain of definition of
$$f(x) = \ln$$
 _____ /4marks $x-1$

- 5) find the monthly payment on a mortgage of 75000 frw on 8% interest rate that run for 20 years /3 marks
- 6) given f(x) = ln(1-x) and $g(x) = e^x$
- a) write the Maclaurin polynomial of degree three of f(x) /2marks
- b) write the Maclaurin polynomial of degree three of g(x) /2marks
- c) use the results obtained on a) to solve $ln(1-x) + e^x = 1$ /2marks
- 7) evaluate $\int (\sin 4x)e^{\cos 4x}dx$ /2marks
- 8) The population of a colony of rabbits in a park increases at a rate proportional to the population. Initially, there were ten rabbits in the park. When the population is 100 rabbits, the colony is increasing at a rate of seven rabbits per month.
- a) Form a differential equation for the population increase and solve it./4marks
- b) find the number of rabbits when t=20months /1mark
- 9) Consider $F = \{(2x, 0, z) : x; z \in \mathbb{R}\}$ and $G = \{(2x, 3y, 0) : x; y \in \mathbb{R}\}$. Verify Grassmann's formula of dimensions./**4marks**
- 10) find $\frac{dy}{dp}$ given that y= $\ln(p + \cos 2p)$ /3marks
- 11) use complex number to solve $cosx + \sqrt{3}sinx = \sqrt{3}$ /3marks
- 12) for all natural n, the numerical function $H_n(x) = \frac{x^n}{\frac{1}{x^2}}$, $x \in \mathbb{R}$, given

$$M = \int^1 H(x) dx$$
 show that $\forall k \epsilon$, $M + M = \frac{1}{2k + 2k + 1}$ /4marks

- 13) a) linearise $cos^28xsin3x$ /4marks
 - b) deduce $\int cos^2 8x sin 3x d$ /2marks
- 14) find the general solution of the following differential equation:

PAGE 3 OF 4

15) Let U and W be the following subspaces of \mathbb{R}^4 : U= {(a,b,c,d): b+c+d=0} W={(a, b, c, d): a + b = 0, c = 2d}. Find the dimension of U \cap W /3marks

SECTION B: Attempt any 3 the guestions (45 marks)

16) solve
$$y'' - 2y' = x + 2e^x$$
 given that $y(0) = 0, y'(0) = 1$ /15marks

17) given
$$I = \int_0^{\frac{\pi}{4}} (2x+1)\cos^2 x dx$$

And
$$M = \int_0^{\frac{\pi}{4}} (2x+1)sin^2xdx$$

- a) calculate I + M/2MARKS
- b) calculate I M/8MARKS
- C)deduce the value of *I* and *M* /5MARKS
- 18) using integration Find the length of the circle of radius H and centre (0,0) **/15MARKS**
- 19) Let f be the linear transformation from \mathbb{R}^2 to \mathbb{R}^3 defined by f ($V \rightarrow$)=A $V \rightarrow$ with A=(2 6)
- a) Find a basis for Ker (f) /6Marks
- b) Determine if f is one to one. /1Mark
- c) Find a basis for the range of f /6Marks
- d) Determine if f is onto /2Marks

20) given
$$p(z) = z^4 - 4(1+i)z^3 + 12iz^2 - 8i(1+i)z - 5$$

- a) Factorize completely p(z) /10MARKS
- b) Solve p(z)=0/5MARKS

.....END.....

2024-2025