KAMONYI DISTRICT

ADVANCED LEVEL HOLYDAYS WORK, 2025

_

SUBJECT: MATHEMATICS S4

COMBINATIONS: -MATHEMATICS-ECONOMICS-GEOGRAPHY(MEG)

MATHEMATICS-COMPUTER-ECONOMICS(MCE)

INSTRUCTIONS: This paper has 2 sections A and B

SECTION A: Attempt ALL questions	(55 marks)
SECTION B: Attempt any THREE (3) questions	(45 marks)
SECTION A: Attempt all the questions	(55 marks)

- 1. State whether each of the following statements is **True** or **False**.
 - a) A binary operator or a binary operation combines two elements to give a unique third element.(1 mark)
 - b) A compound proposition identically true for all possible truth values of its components is called a contradiction. (1mark)
- 2. If all \overrightarrow{AB} = a and \overrightarrow{CD} = 3a which of the following statements is true? (1mark)
 - a) AB equal to CD
 - b) \overrightarrow{AB} is three times as long as \overrightarrow{CD}
 - c) CD is three times as long as AB
- 3. Study parity function and Match the following: (3marks)

FUNCTIONS (COLUMN A)	PARITY FUNCTION (COLUMN B)
1. $f(x) = x^3 - 1$	a) Odd function
2. $g(x) = \frac{\cos x}{x}$	b) even function
3. $h(x) = \frac{\sin x}{x}$	c) neither even nor odd function

4. a) State the Cosine and Sine laws which are used to solve practical problems involving triangle and angles. (3marks)

b) A right triangle ABC, is rectangle in A such that AB = 22 cm and AC = 50 cm. Find the measure of the angle

AĈB. (2marks)

- 5. a) Show that $p \Rightarrow q$ and pVq are logically equivalent. Justify your answer (2maks) b) how do we call this tautology? (1mark)
- 6. By showing your working steps, choose the best answer of the following:

a)
$$7\log(\frac{16}{15}) + 5\log(\frac{25}{24}) + 3\log(\frac{81}{80})$$
 is equal to: (3marks)
i) 0
ii) 1
iii) log 2
iv) log 3
b) $\log_{5\sqrt{5}}5$ is equal to: (3marks)
i) $\frac{2}{3}$
ii) $\frac{1}{3}$
iii) $\frac{1}{2}$
iv) 2
v) $\frac{3}{2}$
c) $(\frac{1}{4} + \frac{1}{2}) sinxcosx$ is equal to: (2marks)
tanx cotx
i) cos x
ii) -1
iii) sin²x
iv) 1

- 7. If α and β are the roots of the equation, X²- X 3=0, without solving the equation, find the value of $\alpha^3 + \beta^3$. (3marks)
- 8. Solve the inequality $|2x + 3| \ge |x 4|$. (3marks)
- 9. Evaluate the following limits:

a)
$$\lim_{x \to -\infty} \frac{\sqrt{x^2+2}}{3x-6}$$
 (2marks)
b)
c) $\lim_{x \to 1} \frac{x^{20}-1}{x^{10}-1}$ (2marks)
2 1

d) $\lim_{x \to 0} (x \cos \frac{1}{x})$ (2marks)

10. **T** is a tangent line to the curve $y = x^2 + 6x - 4$ at (1,3) and **N** is a normal line to the curve $Y = X^2 - 6X + 18$ at (4,10). Find the coordinates of the point of intersection of **T** and **N**. (6marks) 11. Find the value of K if the angle between $\vec{u} = (k,3)$ and $\vec{v} = (4,0)$ is 45°. (3marks) ^{12.} a) Rationalize the denominator and simplify the expression $\frac{2\sqrt{6+5}\sqrt{32}}{2}$ (2marks) b) Transform to simple radical of $\sqrt{6} - 2\sqrt{5}$. (3marks) 13. a) If f(x) = 3x and $g(x) = x^2 + 1$, find (gof)(4). (2maks) 2x + 3b) find the inverse of the function $f(x) = \int_{x-1}^{x-1} f(x) dx$ (2marks) 14. solve : $\left(\frac{1}{9}\right)^{x-2} = 4^{3-2x}$

SECTION B: ATTEMPT ONLY THREE (3) QUESTIONS (45 MARKS)

(3marks)

15. a) solve the following equations in set of real numbers:

	i)	$4 + \sqrt{3x} - 1 = 9$	(5marks)	
	ii)	$x^4 - 3x^3 + 4x^2 - 3x + 1 = 0$	(5marks)	
b) Find $\frac{dy}{dx}$	/ in term	s of X and Y of the function	$\frac{x-y}{x+y} = \frac{x^2}{y} + 1$	(5marks)

16. a) Suppose that the profit (P) obtained in selling X units of certain item each week is given by $P = 50\sqrt{X} - 0.5X - 500$ where $0 \le X \le 800$. Find the rate of change of P with respect to X when X = 1600 (5marks)

b) Solve the following simultaneous equation: $\begin{cases} x^2 + y^2 = \frac{37}{4} \\ xy = \frac{3}{2} \end{cases}$ (5marks)

x-2, if $x \ge 2$

c) Find the value for P and q so that the function is continuous of $f(x) = {\sqrt{P - x^2}, if - 2 \le x < 2}$ (5marks) q - x, if $x \le -2$

17. a) The operation * is defined in set of real numbers by $a^* b = a + b - ab$

- i) calculate the (-2) * (4 * 1) and (-2* 4) * 1 and give the conclusion. (4marks)
- Find the identity element. ii) (3marks)
- Determine the inverse element under this operation and hence calculate the inverse of -3. iii) (3marks)

b) i) Write down the Cayley table for addition modulo 5 on the set \mathbb{Z} or $(\mathbb{Z}_5, +) = ((mod_5), +)$ (2marks) ii) Verify if $(\mathbb{Z}_5, +)$ Cayley table found in **b**) i) above is a commutative group. (3marks)

- 18. Given the function **f** of real variable x defined by: $f(x) = \frac{x^2-1}{x^2-4}$
 - a) Determine the domain of definition of f(x). (2marks)
 - b) Calculate the limits at the boundaries of the domain. (3marks)
 - c) State any asymptotes. (2marks)
 - d) Make the variation table to indicate the interval of increasing or decreasing. (3marks)
 - e) Find the X-intercepts and y-intercept for the graph of f. (2marks)
 - f) Sketch the graph of **f** in a Cartesian plane. (3 marks)
- 19. Using graph, determine the image of the triangle of ABC with A(1,2), B(4,1) and C(3,4) under a reflection in the line Y= 0 (x-axis) followed by enlargement of scale factor -2 and Centre of enlargement (0, -2) of triangle A' B' C' to give triangle A" B" C". Hence state the coordinates of triangles A' B' C' and A" B" C". (15marks)

......END......